Master Gardener Association of San Diego County

Healthy Soil The Key to Growing Great Plants

Presented by Niki Vollrath Master Gardener

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

What is Healthy Soil?

and what is not

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Soil is ...

"a naturally occurring mixture of inorganic and organic ingredients with a definite form, structure, and composition that varies from one location to another."

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

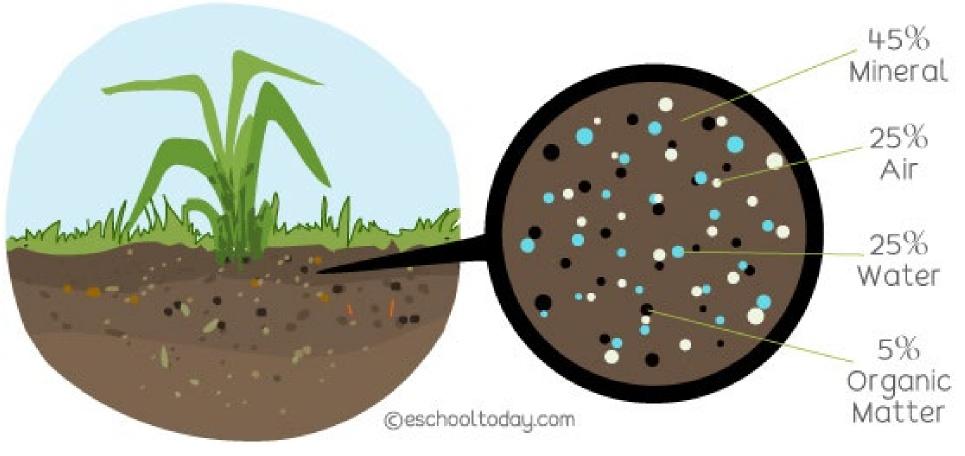
Soil is Living

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

MASTER GARDENER ASSOCIATION of San Diego County

Ę

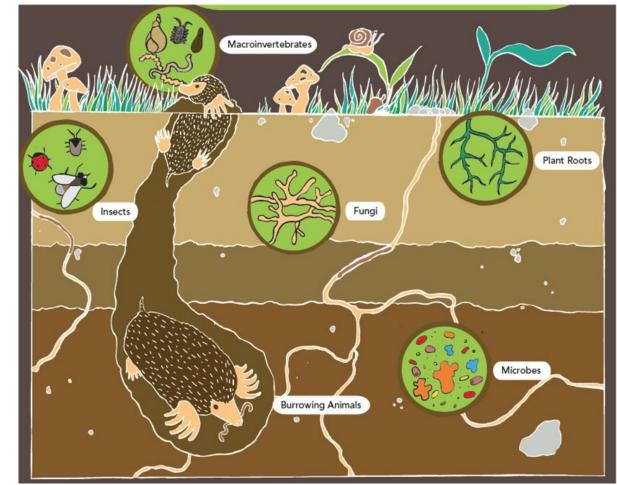
Healthy soil has ...


"The continued capacity ... to function as a vital living ecosystem that sustains plants, animals, and humans"

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Healthy soil is ...

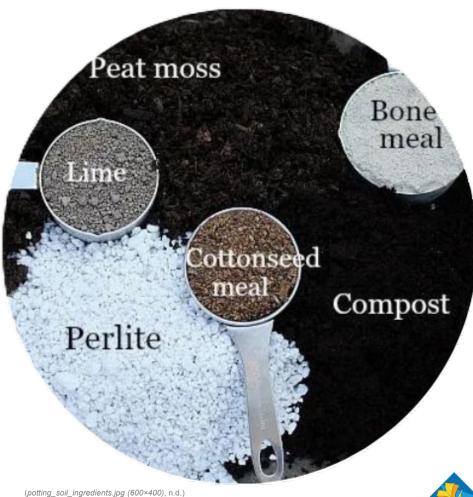
(*ds_03_particles-and-pores.gif* (260×204), n.d.)


UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Soil Composition Soil Organic Matter

Consists of:

- Microbes
- Fungi
- Plant roots
- Insects ants, beetles
- Macroinvertebrates Snails, slugs, worms, pillbugs, etc
- Burrowing animals moles, gophers


(Captain Planet Foundation – Engaging & Empowering Young People to Be Problem Solvers for the Planet, n.d.)

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

What about potting soil?

- Manufactured product
- Contains variable amounts of different materials
- May be pH adjusted
- May contain fertilizers
- Little or no actual soil
- Great for containers

Factors impacting soil health:

- Structure
- Texture
- pH & nutrient content

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Structure

Ę

Images: Granular structure (*File:Douglas County, SD, Soil Structure on April 27, 2015 (17207379368).Jpg - Wikimedia Commons,* 2015) Blocky structure (Kelley & Kelley, n.d.) Prismatic structure (Kelley & Kelley, n.d.)

BI2 OPERATION BI2 DE BI2 DE BI2 </

MASTER GARDENER ASSOCIATION of San Diego County

UC Master Gardener Program

UNIVERSITY OF CALIFORNIA

Agriculture and Natural Resources

Blocky

Texture

Ę

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

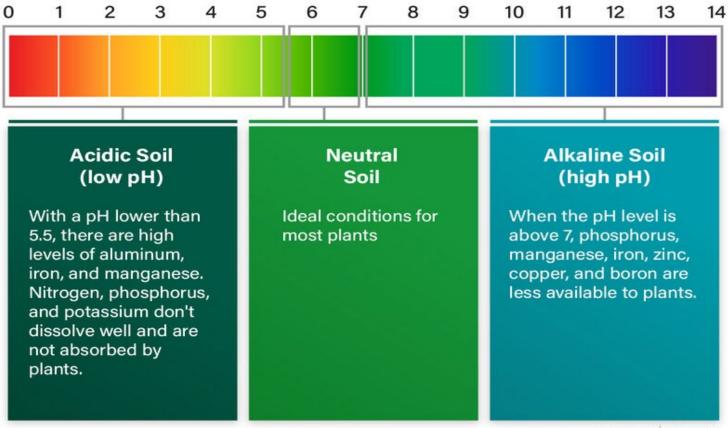


Image credit: Sand: (*File:BeachSand.jpg - Soil Ecology Wiki*, n.d. Pore space: (*ds_03_particles-and-pores.gif* (260×204), n.d.))

Soil pH

Ę

LAWN LOVE lawnlove.com

(RSZ_1Soil-Ph.jpg (800×566), n.d.)

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Essential Nutrients for Plant Growth

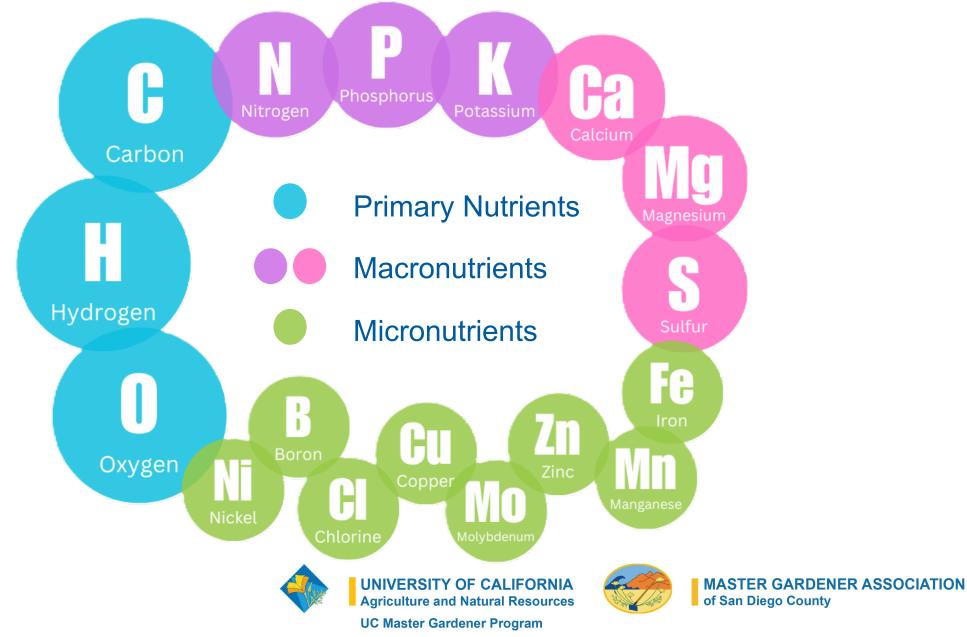


Image credit: N Vollrath 2024

I≡

5 Essential Functions of Soil

Ę

Regulating water

Healthy soil:

- Absorbs rainfall, snowmelt and irrigation water
- Mitigates flooding
- Supplies water and air to plant roots
- Stores water for plants, wildlife and people

Sustaining plant and animal life

Healthy soil:

- Provides habitat for organisms such as microscopic bacteria and earthworms
- Creates habitat for diverse plants, animals, and microbes living in and above the soil

Filtering and buffering potential pollutants

Image courtesy of Canva

Healthy soil:

- Removes pollutants and cleanses water
- Absorbs and filters excess nutrients, and pollutants so water does not carry contaminants to groundwater or surface water

Cycling nutrients

Healthy soil:

- Stores & transforms plant nutrients
- Makes nutrients available to plants
- Stores atmospheric carbon
- Minimizes leaching of nutrients to ground and surface water

Providing physical stability and support

Healthy soils:

- Anchor plant roots
- Provide a healthy rooting environment
- Provide a stable foundation for structures
- Protect cultural resources

Do you have healthy soil?

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Indicators of soil health

Plenty of earthworms

Productive plants

Water easily soaks the surface

Soil is easy to work

Images vegetables: courtesy of Canva gardening hands: courtesy of Canva earthworms: (File:Earthworm on Earth - heart.jpg - Wikimedia Commons, 2006) water: (Markus-Spiske-SFYDXGRt5OA-Unsplash-200x300.jpg (200×300), n.d.)


Getting to know your soil

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Dig a hole

(Screenshot 2018-02-23 AT105742am.png (551×312), 2018)

- One or more holes for each sampling area
- Use a hand auger, shovel or trowel
- Dig when soil is moist
- Look for changes in:
 - \circ texture \circ roots
 - \circ structure \circ color
 - o density
 odor
 - moisture

Check the Texture

Video: (Stark Bro's, 2021)

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Check the stability

Video:TheUSDANRCS, 2012

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Check the moisture

Fine sand and loamy fine sand soils at various soil moisture

Slightly moist

- Very weak ball
- Well-defined finger mark

All images: (Estimating Soil Moisture by Feel and Appearance, 1998)

Moist

Loose sand grains

Moderate staining on

Darkened color

Wet

- Weak ball
- Loose sand grains
- Darkened color
- Heavy water staining on fingers
- Will not ribbon

MASTER GARDENER ASSOCIATION of San Diego County

• Will not ribbon

Weak ball

fingers

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources

UC Master Gardener Program


Check the moisture

Sandy clay loam, loam, and silt loam soils at various soil moisture conditions

Slightly moist

- Weak ball with rough surfaces
- No water staining on fingers
- A few soil grains break away

Moist

- Forms a ball
- Darkened color
- Very light staining on fingers
- Forms a weak ribbon

Wet

- Forms a ball
- Well-defined finger marks
- Light to heavy soil/water coating on fingers
- Ribbons between thumb and forefinger

MASTER GARDENER ASSOCIATION of San Diego County

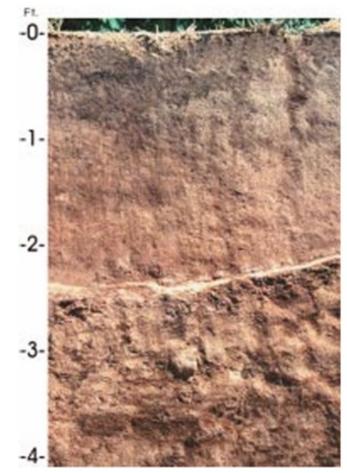
UC Master Gardener Program

Check the drainage

- Dig a hole about 1 foot deep
- Fill with water and allow it to drain completely
- Immediately refill the pit and measure the depth of the water with a ruler
- 15 minutes later, measure the drop in water in inches, and multiply by 4 to calculate how much water drains in an hour

< 1" per hour	POOR
1" - 6" per hour	IDEAL
> 6" per hour	EXCESSIVE

Check the color and odor



Black	High in organic matter (4% or more)
Brown	Good organic matter content and well-drained
Red	Low in organic matter, well drained; color is due to the presence of iron
Gray	Low in organic matter, poorly-drained
Yellow	Low in organic matter, well-drained
Mottled	Mottling effects in subsoil indicates both well and poorly drained conditions during the year due to fluctuations in water table

Check the depth & uniformity

("San Joaquin - California State Soil," n.d.)

Look for:

- compact clay
- bedrock
- hardpan
- layer of sand or gravel

San Joaquin Soil Series

- Surface layer: brown loam
- Subsoil upper: brown loam
- Subsoil lower: brown clay
- Substratum: light brown and brown, indurated hardpan

Check the pH and nutrients

Ę

(81LMIYOIRFL._AC_SX425_.jpg (425×755), n.d.)

(The Celtic Farm, n.d.)

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Should I test my soil?

Ask yourself ...

- Do my plants look healthy?
- What am I growing?
- Why am I growing it?
- How much does testing cost?
- What will I do with the results?

By Alandmanson - Own work, CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=61423168

Keep Your Soil Healthy

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Manage Common Soil Problems

- Compaction
- Drainage
- Too much water, too little air
- Too little water, too much air

Erosion

• pH

Compaction

To manage compaction:

- Design your planting area so that you do not walk over bare soil in your garden
- Soil should not be dug until it is sufficiently dry enough to crumble when worked on

Drainage

To improve drainage:

ADD ORGANIC MATTER!

- Compost
- Organic mulches
- Living plants
- Cover crops

(Columbus KFeehan Soil Erosion, resized.jpg (600×400), n.d.)

Too much water, too little air

To prevent aeration deficit:

- Avoid compaction
- Improve soil structure
- Select plant species that are more tolerant of wet soils, especially if periodic soil saturation is unavoidable

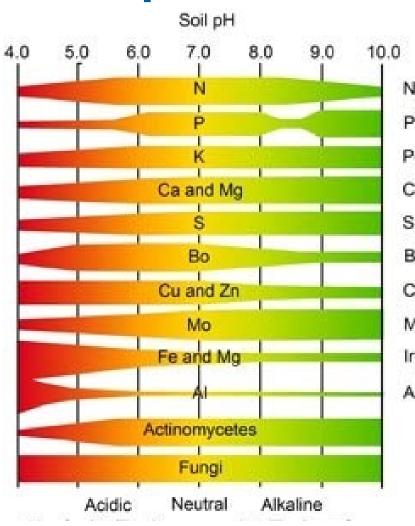
(File:Gley.JPG - Wikimedia Commons, n.d.)

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Too little water, too much air

To prevent overwatering or underwatering:

- Use appropriate and efficient irrigation systems
- Consider the depth, structure and texture of the soil
- Consider the microclimate
- Understand your landscape's moisture demands


Images: sprinklerhead: (*FEMP_Sprinklerhead.jpg* (820×410), n.d.) Smart water controller: (*Rainbird-st.jpg* (580×326), n.d.) Soaker timer: (*E3b91cf0-2a5f-4afe-89bf-f82a44af5faa.jpg* (800×800), n.d.) Soaker hose: (04fb5271-5f64-471a-820c-05afc30aa9f7.jpg (800×800), n.d.)

Soil pH

Nitrogen Phosphorus Potassium Calcium and Magnesium Sulphur Boron Copper and Zinc Molybdenum Iron and Managanese Aluminium

To adjust pH:

- Replenish the soil each gardening season by amending it with organic matter, e.g., compost and mulch
- Amend soil to adjust soil pH up or down

Erosion

To reduce erosion:

- Replace lost nutrients by adding compost
- Add three inches of organic mulch each year.
- Plant a cover crop
- Use an inorganic mulch (stone, gravel, DG) where appropriate
- Keep soil covered

⁽*Erosion-400x320.jpg (400×320*), n.d.)

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Optimize Soil Health

5 Principles

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Maximize

living roots

Maximize soil cover

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Minimize Disturbance

Why?

- Soil disturbance can create a hostile environment for microorganisms
- Protects against water ponding or erosion.

How?

- Tread lightly
- Don't work in wet soil!
- Lay organic matter on the surface
- Push aside the mulch layer when you plant
- Cut your plants at the soil line

Image: (Boley, 2022)

Maximize biodiversity

Why?

Beets:Kilmartin, E., [UCANR] (2016) Flowers: Thomas (2018) Mycorrhizae: Canva Peas: Ganzhyi (2021)

A wide mixture of plants supports the

diversity of soil microorganisms

How:

- Include different plant types (perennial, annual, woody, grassy, broadleaf, legume, etc.)
- Use plants with different root structures (tap, fibrous, etc.).
- Rotate crops

Maximize soil cover

Why?

- Moderates soil temperature
- Conserves moisture
- Provides food and habitat for soil organisms
- Prevents erosion

How:

- Keep soil covered
- Plant cover crops
- Use organic mulch
- Leave plant residue in place

Images: Wood chips: (Hou, 2019) Fallen leaves: Jones (2020) Straw mulch: (343777display.png (1440×502), n.d.)

Maximize presence of living roots

Why?

- Slow and steady supply of plant nutrients
- Improves soil structure
- Promotes movement of air and water
- Improved environment for plant roots and soil organisms

How:

- Let it be!
- Leave grass clippings on the lawn.
- Use compost as a mulch.
- Keep plants growing throughout the year

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

Minimize the use of chemicals

Why?

- Possibly toxic to soil microorganisms
- Can disrupt the symbiotic relationships
- Some pesticides break down quickly while others may persist for long periods.

How:

- Choose organic over synthetic
- Choose the right plant in the right place
- Providing habitat for natural enemies
- Use Integrated Pest Management

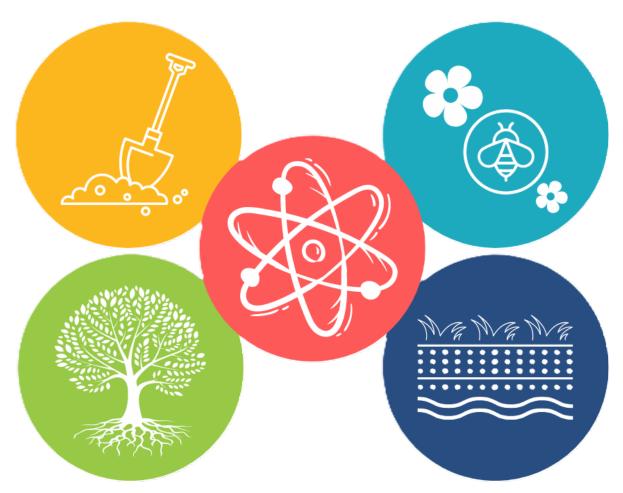
Should I use compost from The Greenery?

It depends on your tolerance for risk

Potential benefits:

- Free or low cost organic matter
- Time spent outdoors
- Mental and emotional health

Potential costs & considerations:


- How much would I consume?
- Who would be consuming my produce?
- Other environmental hazards

Conclusions

- Soil is ALIVE!
- Get to know your soil
- Adopt the 5 principles
 - Minimize disturbance
 - Maximize biodiversity
 - Maximize soil cover
 - Maximize living roots
 - Minimize use of chemicals

When in doubt, ADD ORGANIC MATTER!

UNIVERSITY OF CALIFORNIA Agriculture and Natural Resources UC Master Gardener Program

